

中显COG液晶屏使用说明书 ZX160105GDPSWSN

2012年8月25日

北京市海淀区中关村大街28-1号中海园电子市场BI-057A-2室

电话:(86)-010-82626833 传真:(86)-010-51601226

企业网站: http://www.zxlcd.com

TEL:82626833,82533328

RECORDS OF REVISION

DATE	REVISED NO.	REVISED DESCRIPTIONS	PREPARED	CHECKED	APPROVED
March 25, 2008	1.00	FIRST ISSUE	ynn		

CONTENTS

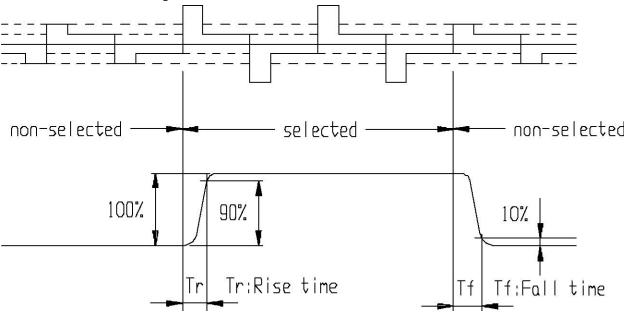
1.	FEATURES	1
2.	ABSOLUTE MAXIMUM RATING	1
3.	ELECTRICAL CHARACTERISTICS	1
4.	OPTICAL CHARACTERISTICS	2
5.	FUNCTIONAL DESCRIPTION	3
6.	INSTRUCTION DESCRIPTION	5
7.	TIMING CHARACTERISTICS	6
8.	PIN ASSIGNMENT	8
9.	OUTLINE DIMENSIONS	9
10.	RELIABILITY	10
11.	QUALITY GUARANTEE	11
12.	INSPECTION CRITERIA	12
13.	PRECAUTIONS FOR USING LCD MODULES	15
14.	USING LCD MODULES	16

1. FEATURES:

ITEM	STANDARD VALUE	UNIT
Display Type	160*105 dots	-
LCD Type	■FSTN, GREEN, Transflective, Positive	-
	□STN, BLUE, Transflective, Negative	-
LCD Duty	1/105	-
LCD Bias	1/11	-
Viewing Direction	6:00	-
Backlight Type	□LED(White)	-
	■LED(GREEN)	-
Interface	8080Serial interface	-
Driver IC	■ UC1610	-
Module Dimension	63.0(W) X 50.0(H) X2.1(LCD)(T)	mm
Effective Display	51.18(W) X32.53 (H)	mm
Area		
Dot Size	0.30 (W) X 0.29 (H)	mm
Dot Pitch	0.32 W) X 0.31(H)	mm

2. ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	CONDITION	STAN	UNIT			
I I EIVI	STIVIBOL	CONDITION	MIN	TYP	MAX	CIVII	
POWER SUPPLY FOR LOGIC	VDD	Ta=25°C	2.4	_	3.6	V	
LCD DRIVER VOLTAGE	VLCD	Ta=25°C	4.0	_	15.0	V	
INPUT VOLTAGE	VIN	Ta=25°C	-0.3	_	VDD+0.3	V	
Module OPERATION TEMPERATURE	TOPR		-20	_	+70	$^{\circ}\!\mathbb{C}$	
Module STORAGE TEMPERATURE	TSTG		- 30		+80	$^{\circ}\!\mathbb{C}$	
Storage Humidity	H_D	Ta < 40 °C	-		90	%RH	

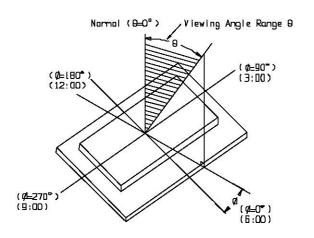

3. ELECTRICAL CHARACTERISTICS

ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage (logic)	VDD-VSS	-	2.4	3.3	3.5	V
Supply Voltage (LCD)	VDD-V0	Ta=+25°C	4.0	12.5	15.0	V
Innut signal valtage	V-IH	"H" level	0.8 VDD	-	VDD	V
Input signal voltage	V-IL	"L" level	VSS	-	0.2VDD	V
Output signal voltage	V-OH	"H" level	0.8VDD	-	VDD	V
Output signal voltage	VOL	"L" level	VSS	-	0.2VDD	V
Supply Current (logic)	IDD	VDD=3.0V	-	-		mA
Backlight Voltage	V-BL	LED(WHITE)	-	3.0	3.1	V
Backlight Current	I-BL	LED	-	-	-	mA
Frame frequency	f-FR	Ta=25 ℃	70	80	100	На

4. OPTICAL CHARACTERISTICS

Item	Symbol	Condition	Min	Тур	Max	Unit	Remarks	Note
Response	Tr	-	-	-	-	ms	-	1
Time	Tf	-	-	-	-	ms	-	1
Contrast Ratio	Cr	-	-	-	-	-	-	2
N			41	-	-	deg	Ø= 90	3
Viewing	θ	Cr≥ 2	38	-	-	deg	$\emptyset = 270$	3
Angle Range			32	-	-	deg	$\emptyset = 0$	3
Kange			19	-	-	deg	Ø = 180	3

Note 1. Definition of response time



Note 2. Definition of Contrast Ratio 'Cr' Angle Range 'q'

Brightness of non-selected segment(B2)
Brightness of selected segment(BL)

Brightness curve for non-selected segment
Brightness curve for selected segment
Brightness curve for non-selected segment
Brightness curve for non-selected segment
Brightness curve for non-selected segment
Brightness curve for selected segment
Brightness curve for selected segment

Note 3. Definition of Viewing

5. FUNCTIONAL DESCRIPTION

MICROPROCESSOR INTERFACE

Chip Select Input

UC1610

There are CS1B and CS2 pins for chip selection. The \$60000 can interface with an MPU only when CS1B is "L" and CS2 is "H". When these pins are set to any other combination, RS, E_RD, and RW_WR inputs are disabled and DB0 to DB7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset

Parallel / Serial Interface

The \$60,000 has three types of interface with an MPU, which are one serial and two parallel interfaces. This parallel or serial interface is determined by PS pin as shown in table 8.

Table 8. Parallel / Serial Interface Mode.

PS	Туре	CS1B	CS2	C68	Interface mode
ш	Dorollol	CS1B	CS2	Н	6800-series MPU mode
"	Parallel		C32	L	8080-series MPU mode
L	Serial	CS1B	CS2	*×	Serial-mode

*x: Don't care

TEL:82626833,82533328

Parallel Interface (PS = "H")

The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by C68 as shown in table 9. The type of data transfer is determined by signals at RS, E_RD and RW_WR as shown in table 10.

Table 9. Microprocessor Selection for Parallel Interface

C68	CS1B	CS2	RS	RS E_RD		DB0 to DB7	MPU bus	
Н	CS1B	CS2	RS	E	RW	DB0 to DB7	6800-series	
L	CS1B	CS2	RS	/RD	/WR	DB0 to DB7	8080-series	

Table 10. Parallel Data Transfer

Common	6800-	series	8080-	series	Description
RS	E_RD (E)	RW_WR (RW)	E_RD (/RD)	RW_WR (/WR)	
Н	Н	Н	L	Н	Display data read out
Н	Н	L	Н	L	Display data write
L	Н	Н	L	Н	Register status read
L	Н	L	Н	L	Writes to internal register (instruction)

Data Transfer

The \$660010 uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in figure 4. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in figure 5. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data.

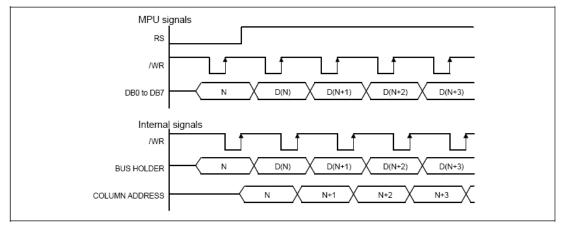


Figure 4. Write Timing

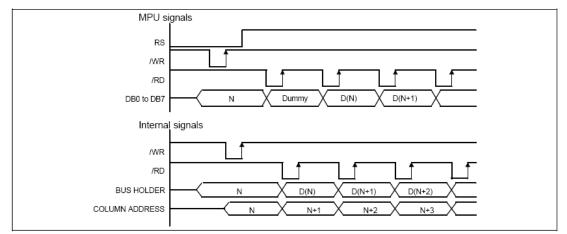
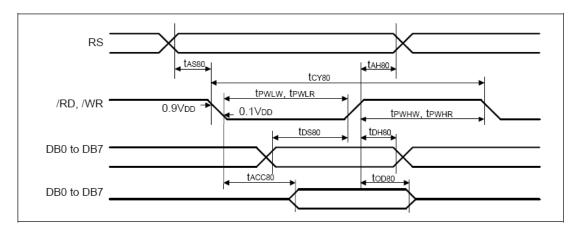


Figure 5. Read Timing

6. INSTRUCTION DESCRIPTION

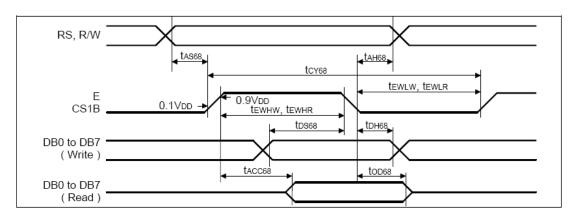

× : Don't care

Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	
Read display data	1	1				Read	data				Read data from DDRAM	
Write display data	1	0		Write data							Write data into DDRAM	
Read status	0	1	BUSY	ADC	αN	RES	0	0	0	0	Read the internal status	
Set page address	0	0	1	0	1	1	P3	P2	P1	P0	Set page address	
Set column address MSB	0	0	0	0	0	1	Y7	Y6	Y5	Y4	Set column address MSB	
Set column address LSB	0	0	0	0	0	0	Y3	Y2	Y1	Y0	Set column address LSB	
Set modify-read	0	0	1	1	1	0	0	0	0	0	Set modify-read mode	
Reset modify-read	0	0	1	1	1	0	1	1	1	0	release modify-read mode	
Display ON / OFF	0	0	1	0	1	0	1	1	1	D	D = 0: display OFF D = 1: display ON	
Set initial display line	0	0	0	1	0	0	0	0	×	×	2-byte instruction to specify the initial display line to realize vertical scrolling	
register	0	0	×	S6	S5	S4	S3	S2	S1	S0		
0.41.37.1.00.00	0	0	0	1	0	0	0	1	×	×	2-byte instruction to specify the	
Set initial COM0 register	0	0	×	C6	C5	C4	C3	C2	C1	C0	initial COM0 to realize window scrolling	
Set partial display	0	0	0	1	0	0	1	0	×	×	2-byte instruction to set partial	
duty ratio	0	0	×	D6	D5	D4	D3	D2	D1	D0	display duty ratio	
Set N-line inversion	0	0	0	1	0	0	1	1	×	×	2-byte instruction to set n-line	
Set N-line inversion	0	0	×	×	×	N4	N3	N2	N1	N0	inversion register	
Release N-line inversion	0	0	1	1	1	0	0	1	0	0	Release N-line Inversion mode	
Reverse display ON / OFF	0	0	1	0	1	0	0	1	1	REV	REV = 0: normal display REV = 1: reverse display	
Entire display ON / OFF	0	0	1	0	1	0	0	1	0	EON	EON = 0: normal display EON = 1: entire display ON	

Instruction	RS	RW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description
Power control	0	0	0	0	1	0	1	VC	VR	VF	Control power circuit operation
Select DC-DC step-up	0	0	0	1	1	0	0	1	DC1	DC0	Select the step-up of the internal voltage converter
Select regulator resistor	0	0	0	0	1	0	0	R2	R1	R0	Select internal resistance ratio of the regulator resistor
Set electronic volume	0	0	1	0	0	0	0	0	0	1	2-byte instruction to specify the
register	0	0	×	×	EV5	EV4	EV3	EV2	EV1	EV0	electronic volume register
Select LCD bias	0	0	0	1	0	1	0	B2	B1	В0	Select LCD bias
SHL select	0	0	1	1	0	0	SHL	×	×	×	COM bi-directional selection SHL = 0: normal direction SHL = 1: reverse direction
ADC select	0	0	1	0	1	0	0	0	0	ADC	SEG bi-directional selection ADC = 0: normal direction ADC = 1: reverse direction
Set static indicator mode	0	0	1	0	1	0	1	1	0	SM	2-byte instruction to specify the
Set static indicator register	0	0	×	×	×	×	×	×	S1	S0	static indicator mode
Oscillator ON start	0	0	1	0	1	0	1	0	1	1	Start the built-in oscillator
Set power save mode	0	0	1	0	1	0	1	0	0	Р	P = 0: standby mode P = 1: sleep mode
Release power save mode	0	0	1	1	1	0	0	0	0	1	Release power save mode
Reset	0	0	1	1	1	0	0	0	1	0	Initialize the internal functions
NOP	0	0	1	1	1	0	0	0	1	1	No operation
Test instruction	0	0	1	1	1	1	×	×	×	×	Don't use this instruction.

7. TIMING CHARACTERISTICS

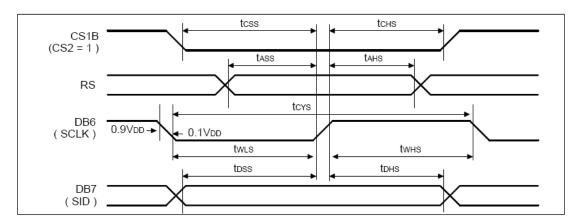
Read / Write Characteristics (8080-series MPU)



 $(VDD = 2.4 \sim 3.6V, Ta = -40 \sim +85^{\circ}C)$

		(10		ov, ra ic	00 0
Signal	Symbol	Condition	Min.	Max.	Unit
RS	t _{asso} t _{ahso}		0	-	ns
	t _{CY80}		300	-	ns
RW_WR (/WR)	t _{PWLW} t _{PWHW}		60 60	-	ns
E_RD (/RD)	t _{PWLR} t _{PWHR}		120 60	-	ns
DB0	t _{DS80} t _{DH80}		40 15	-	ns
DB7	t _{ACC80} t _{OD80}	CL = 100 pF	- 10	140 100	ns
	RS RW_WR (/WR) E_RD (/RD) DB0 to	RS	RS	Signal Symbol Condition Min. RS t _{AS80} t _{AH80} 0 t _{CY80} 300 RW_WR (/WR) t _{PWLW} 60 (/WR) t _{PWHW} 60 E_RD (/RD) t _{PWLR} 60 (/RD) t _{PWHR} 120 0 40 15 15 0 t _{ACC80} CL = 100 pF	RS

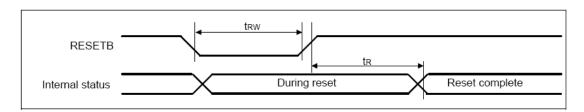
NOTE: *1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. (tr + tf) < (tCY80 - tPWLW - tPWHW) for write, (tr + tf) < (tCY80 - tPWLR - tPWHR) for read


Read / Write Characteristics (6800-series Microprocessor)

			(VD	D = 2.4 ~ 3.	6V, Ta = -40	~ +85°C)
Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time Address hold time	RS RW	tas68 tah68		0 0	-	ns
System cycle time		tcy68		300	-	ns
Enable width high for write Enable width low for write	E_RD (E)	tewhw tewkw		60 60	-	ns
Enable width high for read Enable width low for read	E_RD (E)	tewhr tewhr		120 60	-	ns
Data setup time Data hold time	DB0	tDS68 tDH68		40 15	-	ns
Read access time Output disable time	to DB7	tACC68 tOD68	CL = 100 pF	- 10	140 100	ns

NOTE: *1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. (tr + tf) < (tCY68 - tEWHW - tEWLW) for write, (tr + tf) < (tCY68 - tEWHR - tEWLR) for read

Serial Interface Characteristics

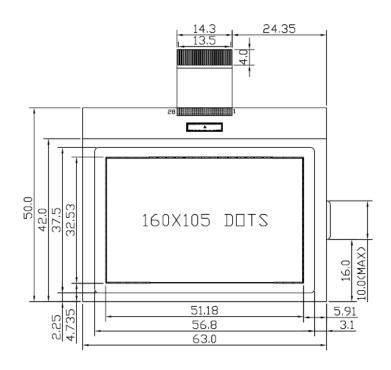


 $(VDD = 2.4 \sim 3.6V. Ta = -40 \sim +85^{\circ}C)$

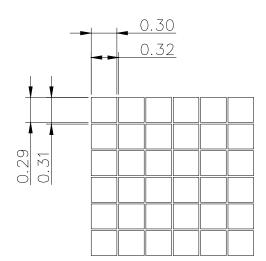
			. (100 2		,	
Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock cycle SCLK high pulse width SCLK low pulse width	DB6 (SCLK)	tscy tshw tsLw		250 100 100	-	ns
Address setup time Address hold time	RS	tass tahs		150 150	-	ns
Data setup time Data hold time	DB7 (SID)	toss tons		100 100	-	ns
CS1B setup time CS1B hold time	CS1B	tcss tcнs		150 150	-	ns

NOTE: *1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

Reset Input Timing



$(VDD = 2.4 \sim 3.6V, Ta = -40 \sim +85^{\circ}C)$							
Item	Signal	Symbol	Condition	Min.	Max.	Unit	
Reset low pulse width	RESETB	trw		1000	-	ns	
Reset time	-	tr		-	1000	ns	


8. PIN ASSIGNMNET

Pin No.	Symbol	Level	Function
1.	CS	H/L	Chip select pin
2.	/RST	H/L	Reset signal
			Register select pin
3.	RS	H/L	RS=H:Data register
			RS=L:Command register
4.	/WR	H/L	Write signal ,low-active
5.	/RD	H/L	Read signal ,low-active
6.	DB0	H/L	Data bit 0
7.	DB1	H/L	Data bit 1
8.	DB2	H/L	Data bit 2
9.	DB3	H/L	Data bit 3
10.	DB4	H/L	Data bit 4
11.	DB5	H/L	Data bit 5
12.	DB6	H/L	Data bit 6
13.	DB7	H/L	Data bit 7
14.	VDD	+3.3V	Power supply for Logic
15.	VSS	0V	Ground
16.	VEE		DC-DC Output voltage
17.	C5+		Capacitor positive connection pin for voltage converter
18.	C3+		Capacitor positive connection pin for voltage converter
19.	C1-		Capacitor negative connection pin for voltage converter
20.	C1+		Capacitor positive connection pin for voltage converter
21	C2+		Capacitor positive connection pin for voltage converter
22.	C2-		Capacitor Negative connection pin for voltage converter
23	C4+		Capacitor positive connection pin for voltage converter
24	V4		LCD drivers supply voltages.
25	V3		Voltages should have the following relationship:
26	V2		$V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS.$
27	V1		
28	V0		

9. OUTLINE DIMENSIONS

SCALE:20/1

10. RELIABILITY

Content of Reliability Test

		Environmental Test		
No.	Test Item	Content of Test	Test Condition	Applicable Standard
1	High temperature storage	Endurance test applying the high storage temperature for a long time.	80 ℃ 200 hrs	
2	Low temperature storage	Endurance test applying the low storage temperature for a long time.	-30 ℃ 200 hrs	
3	High temperature operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70 ℃ 200 hrs	
4	Low temperature operation	Endurance test applying the electric stress under low temperature for a long time.	-20 ℃ 200 hrs	
5	High temperature Humidity storage	Endurance test applying the high temperature and high humidity storage for a long time.	50 ℃ , 90% RH 96 hrs	MIL-202E-103B JIS-C5023
6	High temperature Humidity operation	Endurance test applying the electric stress (Voltage & Current) and temperature humidity stress to the element for a long time.	50 ℃ , 90% RH 96 hrs	MIL-202E-103B JIS-C5023
7	Temperature cycle	Endurance test applying the low and high temperature cycle. -20 °C 25 °C 70 °C 30min. ⇒ 5min. ⇒ 30min. 1 cycle	-20°C - 70°C 10 cycles	
Mech	anical Test	,		I
8	Vibration test	Endurance test applying the vibration during transportation and using.	10-22Hz → 1.5mmp-p 22-500Hz →1.5G Total 0.5hrs	MIL-202E-201A JIS-C5025 JIS-C7022-A-10

北京中显电子有限公司

14/14/14/	7VI	\sim D	$\sim \sim 11$
WWW	. ZXL	JUU .	. COM

TEI	:82626833	82533338
	02020033	. 02033320

	1		ı	
9	Shock test	Constructional and mechanical	50G half sign	MIL-202E-213B
		endurance test applying the shock	wave 1l	
		during transportation.	msedc 3	
			times of	
			each	
			direction	
10	Atmospheric	Endurance test applying the	115 mbar 40	MIL-202E-105C
	pressure test	atmospheric pressure during	hrs	
		transportation by air.		
Othe	rs			
11	Static	Endurance test applying the electric	VS=800V,	MIL-883B-3015.1
	electricity test	stress to the terminal.	RS=1.5 k	
			CS=100 pF	
			1 time	

Supply voltage for logic system = 3V. Supply voltage for LCD system = Operating voltage at 25 °C.

11. QUALITY GUARANTEE

Acceptable Quality Level

Each lot should satisfy the quality level defined as follows.

- Inspection method: MIL-STD-105E LEVEL II Normal one time sampling

- AQL

Partition	AQL	Definition
A: Major	0.4%	Functional defective as product
B: Minor	1.5%	Satisfy all functions as product but not satisfy cosmetic standard

Definition of 'LOT'

One lot means the delivery quantity to customer at one time.

Conditions of Cosmetic Inspection

Environmental condition

The inspection should be performed at the 1cm of height from the LCD module under 2 pieces of 40W white fluorescent lamps (Normal temperature $20\sim25^{\circ}$ C and normal humidity $60\pm15\%$ RH).

Inspection method

The visual check should be performed vertically at more than 30cm distance from the LCD panel.

Driving voltage

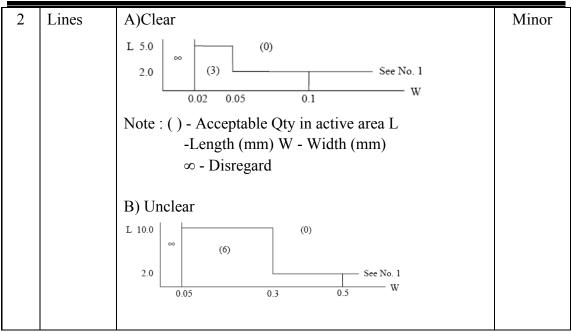
The VO value which the most optimal contrast can be obtained near the specified

VO in the specification. (Within $\pm 0.5 V$ of typical value at $25 ^{\circ}C$.).

12. INSPECTION CRITERIA

12.1 Module Cosmetic Criteria

No.	Item	Judgement Criterion	Partition
1	Difference in Spec.	None allowed	Major
2	Pattern peeling	No substrate pattern peeling and floating	Major
3	Soldering defects	No soldering missing No soldering bridge No cold soldering	Major Major Major
4	Resist flaw on substrate	Invisible copper foil ('0.5mm or more) on substrate pattern	Minor
5	Accretion of metallic Foreign matter	No soldering dust No accretion of metallic foreign matters (Not exceed '0.2mm)	Minor Minor
6	Stain	No stain to spoil cosmetic badly	Minor
7	Plate discoloring	No plate fading, rusting and discoloring	Minor
8	Solder amount 1. Lead parts	a. Soldering side of PCB Solder to form a 'Filet' all around the lead. Solder should not hide the lead form perfectly. (too much) b. Components side (In case of 'Through Hole PCB') Solder to reach the Components side of PCB.	Minor
	2. Flat packages	Either 'Toe' (A) or 'Seal' (B) of the lead to be covered by 'Filet'. Lead form to be assume over solder. A B	Minor
	3. Chips	(3/2) H ≥h ≥(1/2) H	Minor


12.2 Screen Cosmetic Criteria (Non-Operating)

No.	Defect	Judgement Criterio	on	Partition	
1	Spots	In accordance with S	Screen Cosmetic Criteria	Minor	
1	Spots	(Operating) No.1.	Operating) No.1.		
2	Lines	In accordance with S	Screen Cosmetic Criteria	Minor	
	Lines	(Operating) No.2.	Operating) No.2.		
3	Bubbles in			Minor	
	polarizer	Size : d mm	Acceptable Qty in active area		
	polarizer	d ≤ 0.3	Disregard		
		$0.3 < d \le 1.0$	3		
		1.0 < d ≤ 1.5	1		
		1.5 < d	0		
4	Scratch	In accordance wit	h spots and lines operating	Minor	
		cosmetic criteria. W	hen the light reflects on the		
		panel surface, the sc	ratches are not to be		
		remarkable.			
5	Allowable	Above defects sho	ould be separated more than	Minor	
	density	30mm each other.	IVIIIIOI		
6	Coloration	Not to be noticeal	Minor		
		area of the LCD p			
		judged with back-			
7	Contamination	Not to be noticeal	ole.	Minor	

WWW.ZXLCD.COM

12.3. Screen Cosmetic Criteria (Operating)

Defect	Judgement Criterion	Judgement Criterion			
Spots	A) Clear Note:		Minor		
	Size: d mm $d \le 0.1$ $0.1 < d \le 0.2$	Acceptable Qty in active area Disregard			
		0			
	Including pin holes a within one pixel size. B) Unclear Size:	nd defective dots which must be			
	Size : d mm	Acceptable Qty in active area			
	d ≤ 0.2	Disregard			
	$0.2 < d \le 0.5$ $0.5 < d \le 0.7$	6 2			
	0.7 < d	0			
		Spots A) Clear Note:	Spots A) Clear Note: Size: d mm		

'Clear' = The shade and size are not changed by VO.

12.4. Screen Cosmetic Criteria (Operating) (Continued)

	Judgement Criterion	Partition
Rubbing line	Not to be noticeable.	
Allowable density	Above defects should be separated more than 10mm each other.	Minor
Rainbow	Not to be noticeable.	Minor
Dot size	To be 95% ~ 105% of the dot size (Typ.) in drawing. Partial defects of each dot (ex. pin-hole) should be treated as 'Spot'. (see <i>Screen Cosmetic Criteria (Operating) No.1</i>)	Minor
Uneven brightness (only back-lit type module)	Uneven brightness must be BMAX / BMIN ≤ 2 - BMAX : Max. value by measure in 5 points - BMIN : Min. value by measure in 5 points Divide active area into 4 vertically and horizontally. Measure 5 points shown in the following figure.	Minor
-	Allowable density Rainbow Dot size Uneven brightness (only back-lit	Allowable density Rainbow Not to be noticeable. Dot size To be 95% ~ 105% of the dot size (Typ.) in drawing. Partial defects of each dot (ex. pin-hole) should be treated as 'Spot'. (see Screen Cosmetic Criteria (Operating) No.1) Uneven brightness must be BMAX / BMIN ≤ 2 - BMAX : Max. value by measure in 5 points (only back-lit type module) Divide active area into 4 vertically and horizontally. Measure 5 points shown in the following figure.

^{&#}x27;Unclear' = The shade and size are changed by VO.

Note:

- (1) Size : d = (long length + short length) / 2
- (2) The limit samples for each item have priority.
- (3) Complexed defects are defined item by item, but if the number of defects are defined in above table, the total number should not exceed 10.
- (4) In case of 'concentration', even the spots or the lines of 'disregarded' size should be not allowed. Following three situations should be treated as 'concentration'.
 - 7 or over defects in circle of '5mm.
 - 10 or over defects in circle of '10mm.
 - 20 or over defects in circle of '20mm.

13. PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

- (1) The display panel is made of glass. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol
- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents
- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I O cable or the backlight cable.
 - (9) Do not attempt to disassemble or process the LCD module.
 - (10) NC terminal should be open. Do not connect anything.

- (11) If the logic circuit power is off, do not apply the input signals.
- (12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - Be sure to ground the body when handling the LCD modules.
 - Tools required for assembling, such as soldering irons, must be properly grounded.
- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.
- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

Storage Precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags (avoid high temperature high humidity and low temperatures below 0 C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- Terminal electrode sections.

14. USING LCD MODULES

Liquid Crystal Display Modules

LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- (1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- (2) Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances which will be damaged by chemicals

such as acetone, toluene, ethanol and isopropylalcohol.

- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum benzin. Do not scrub hard to avoid damaging the display surface.
- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
 - (6) Avoid contacting oil and fats.
- (7) Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temp erature air.
 - (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degradate insulation between terminals (some cosmetics are determinated to the polarizers).
 - (10) As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.

(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be 0.1mm.

Precaution for Handing LCD Modules

Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- (1) Do not alter, modify or change the the shape of the tab on the metal frame.
- (2) Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - (3) Do not damage or modify the pattern writing on the printed circuit board.

- (4) Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
- (5) Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
 - (6) Do not drop, bend or twist LCM.

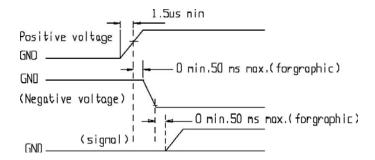
Electro-Static Discharge Control

Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

- (1) Make certain that you are grounded when handing LCM.
- (2) Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- (5) As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.
- (6) To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%60% is recommended.

Precaution for soldering to the LCM

- (1) Observe the following when soldering lead wire, connector cable and etc. to the LCM.
 - Soldering iron temperature : 280 C 10 C.
 - Soldering time: 3-4 sec.
 - Solder : eutectic solder.


If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage dur to flux spatters.

- (2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- (3) When remove the electoluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

Precautions for Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (VO). Adjust VO to show the best contrast.
 - (2) Driving the LCD in the voltage above the limit shortens its life.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.

- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of 40 °C, 50% RH.
- (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.

Storage

When storing LCDs as spares for some years, the following precaution are necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0 C and 35 C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped.)

Safety

- (1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leakes out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

Limited Warranty

Unless agreed between ZXLCD and customer, ZXLC D will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with ZXLCD LCD acceptance standards (copies available upon request) for a period of one year from date of shipments. Cosmetic/visual defects must be returned to ZXLCD within 90 days of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of ZXLCD limited to repair and/or replacement on the terms set forth above. ZXLCD will not be responsible for any subsequent or consequential events.

Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :

- Broken LCD glass.
- PCB eyelet's damaged or modified.
- PCB conductors damaged.

- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's, conductors and terminals.