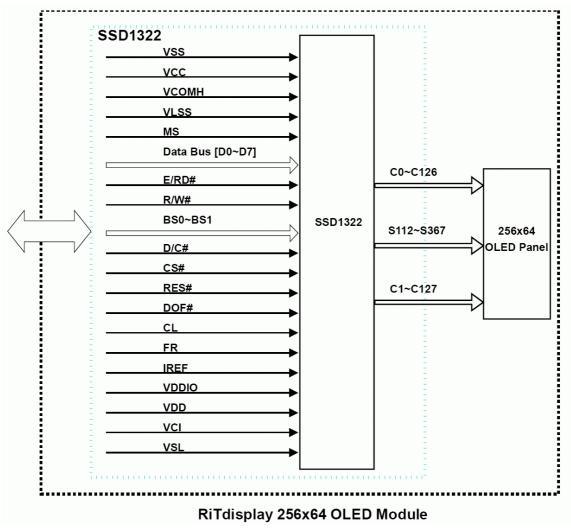


# P21302 256x64 Yellow OLED Application Notes

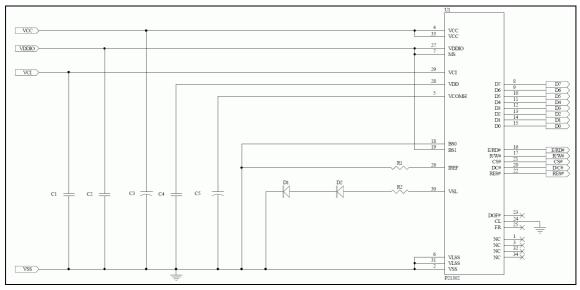


| Version | Content       |
|---------|---------------|
| X01     | First release |

# **CD** ©RITEK GROUP **RITDISPLAY Corporation**


### DESCRIPTION

P21302 is 256x64 passive OLED module with controller for many compact portable applications.


## FEATURE

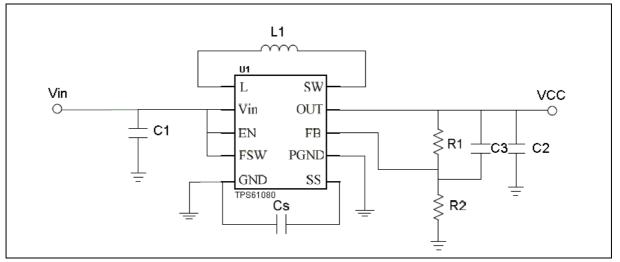
- Panel matrix 256x64.
- Driver IC: SSD1322.
- VCC =14.5V
- VCI =2.4V~3.5V
- VDDIO =1.65V~ VCI
- 16 gray scale levels supported by embedded 480 x 128 x 4 bit SRAM display buffer.
- 8-bit 6800/8080-series parallel interface, 3/4-wire Serial Peripheral Interface.

# FUNCTION BLOCK DIAGRAM



## **CD** ©RITEK GROUP **RiTdisplay Corporation** Application circuit




### **Recommend components:**

- C1, C2, C4: 1uF/16V(0805)
- C3, C5: 4.7uF/35V (Tantalum type) or VISHAY (572D475X0025A2T)
- R1: 430K ohm 1%(0603)
- R2: 50 ohm 1/4W
- D1, D2: RB480K(ROHM)

### This circuit is for 8080 8bits interface.

# **CD** <sup>Ø</sup>RITEK GROUP **RiTdisplay Corporation**

# **DC-DC** application circuit for OLED module



### **Recommend components:**

The C1: 4.7uF/6.3V.

The C2: 4.7 uF/35V Tantalum type capacitor.

The C3: 50pF/16V.

The Cs: 47nF/16V.

The R1: 1.2M ohm/ 1%.

The R2: 110K ohm/ 1%.

The L1: 10uH.

The U1: TPS61080

The R1, R2 and C3 value should be fine tune by customer.

# **RiTdisplay Corporation**

#### **PIN ASSIGNMENT** DESCRIPTION PIN NAME PIN NO. NC 1 No connection. VSS 2 Ground pin. NC 3 No connection. Power supply for panel driving voltage. VCC 4 COM signal deselected voltage level. VCOMH 5 A capacitor should be connected between this pin and VSS. **VLSS** 6 Analog system ground pin. This pin must be connected to VDDIO to enable the chip. MS 7 D7 8 D6 9 D5 10 D4 11 These pins are bi-directional data bus connecting to the D3 MCU data bus. 12 D2 13 D1 14 D0 15 When connecting to an 8080-microprocessor, this pin receives the Read (RD#) signal.Read operation is initiated when this pin is pulled LOW and the chip is selected. E/RD# 16 When serial interface is selected, this pin E(RD#) must be connected to VSS. When 8080 interface mode is selected, this pin will be the Write (WR#) input. Data write operation is initiated when this pin is pulled LOW and the chip is selected. 17 R/W# When serial interface is selected, this pin R/W (WR#) must be connected to VSS. BS0 18 MCU bus interface selection pins. 19 BS1 This pin is Data/Command control pin connecting to the DC# 20 MCU. This pin is the chip select input connecting to the MCU. CS# 21 The chip is enabled for MCU communication only when CS# is pulled LOW. This pin is reset signal input. When the pin is pulled LOW, initialization of the chip is 22 RES# executed. This pin is No Connection pins. DOF# 23 CL External clock input pin. 24 This pin is No Connection pins. FR 25 IREF A resistor should be connected between this pin and VSS. 26 Power supply for interface logic level. VDDIO 27 It should be matched with the MCU interface voltage level. Power supply pin for core logic operation. VDD 28 A capacitor is required to connect between this pin and VSS.

# CD WRITEK GROUP Ritdisplay Corporation

| VCI  | 29 | Low voltage power supply.<br>VCI must always be equal to or higher than VDD and VDDIO.                       |
|------|----|--------------------------------------------------------------------------------------------------------------|
| VSL  | 30 | This is segment voltage reference pin. When external VSL is used, connect with resistor and diode to ground. |
| VLSS | 31 | Analog system ground pin.                                                                                    |
| NC   | 32 | No connection.                                                                                               |
| VCC  | 33 | Power supply for panel driving voltage.                                                                      |
| NC   | 34 | No connection.                                                                                               |

**CD RITEK GROUP RITCISPLAY Corporation** Application Initial Setting

| void initial(void)<br>{                               |                                                         |
|-------------------------------------------------------|---------------------------------------------------------|
| ι<br>comm_out(0xae);                                  | //Display OFF                                           |
| comm_out(0xfd);<br>data_out(0x12);                    | //Set Command Lock                                      |
| comm_out(0xa0);<br>data_out(0x04);<br>data_out(0x11); | //Set Re-map and Dual COM Line mode                     |
| comm_out(0xa1);<br>data_out(0x00);                    | //Set Display Start Line                                |
| comm_out(0xa2);<br>data_out(0x00);                    | //Set Display Offset                                    |
| comm_out(0xa6);                                       | //Normal Display                                        |
| comm_out(0xab);<br>data_out(0x01);                    | //Function Selection<br>//Enable internal VDD regulator |
| comm_out(0xb1);<br>data_out(0x8f);                    | //Set Phase Length                                      |
| comm_out(0xb3);<br>data_out(0x91);                    | //Set Front Clock Divider/Oscillator Frequency          |
| comm_out(0xb4);<br>data_out(0xa0);<br>data_out(0xfd); | //Enable external VSL                                   |
| comm_out(0xb6);<br>data_out(0x08);                    | //Set Second Precharge Period                           |
| comm_out(0xb9);                                       | //Select Default Linear Gray Scale table                |
|                                                       |                                                         |

# **CD** <sup>© RITEK GROUP</sup> RITDISPLAY Corporation

comm\_out(0xbb); //Set Pre-charge voltage data\_out(0x1f); comm\_out(0xbe); //Set VCOMH data\_out(0x07); comm\_out(0xc1); //Set Contrast Current data\_out(0x58);

comm\_out(0xc7); //Master Contrast Current Control
data\_out(0x0f);

comm\_out(0xca); //Set MUX Ratio
data\_out(0x3f);

comm\_out(0xd1); //Display Enhancement B
data\_out(0x82);
data\_out(0x20);

comm\_out(0xaf); //Display ON
}

### /\*After power on the OLED driver IC, please clean the DDRAM.\*/

```
void CleanDDR(void)
{
int i,j;
                     //set column address
comm_out(0x15);
data_out(0x00);
data_out(0x77);
                     //set row address
comm_out(0x75);
data_out(0x00);
data_out(0x7f);
comm_out(0x5c);
                     //write RAM command
for(i=0;i<128;i++)
{
  for(j=0;j<240;j++)
```

RITDISPLAY CORPORATION *Design Dept.* 

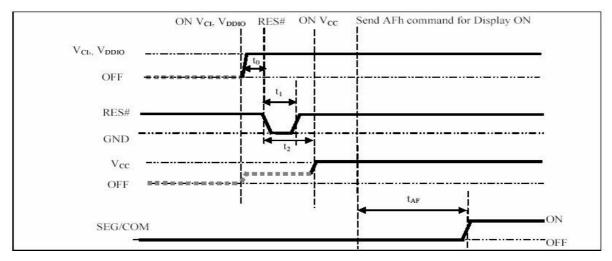
```
() RITEK GROUP
      RiTdisplay Corporation
  { data_out(0x00); }
}
}
void show_data(char a)
{
int i,j;
comm_out(0x15);
                    //set column address
data_out(0x1c);
data_out(0x5b);
comm_out(0x75);
                    //set row address
data_out(0x00);
data_out(0x3f);
comm_out(0x5c);
                    //write RAM command
for(i=0;i<64;i++)
 {
  for(j=0;j<128;j++)
  {
   data_out(a);
 }
 }
}
```

# CD ORITEK GROUP RiTdisplay Corporation

## **GRAPHIC DISPLAY DATA RAM(GDDRAM)**

The GDDRAM address map shows the GDDRAM in Gray Scale mode. Since in Gray Scale mode, there are 16 gray levels. Therefore four bits (one nibble) are allocated for each pixel.

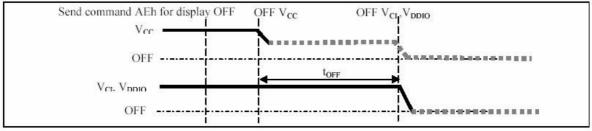
For example D30480[3:0] corresponds to the pixel located in (COM127, SEG2). So the lower nibble and higher nibble of D0, D1, D2, ..., D30717, D30718, D30719 represent the 480x128 data nibbles in the GDDRAM.


|                |                           |             | GI                                                                              | DDRAM in    | Gray Scale  | m | ode (RESE   | Г)          |             |            |                       |
|----------------|---------------------------|-------------|---------------------------------------------------------------------------------|-------------|-------------|---|-------------|-------------|-------------|------------|-----------------------|
|                |                           | SEG0        | SEG1                                                                            | SEG2        | SEG3        |   | SEG476      | SEG477      | SEG478      | SEG479     | SE                    |
|                |                           | 00          |                                                                                 | 00          |             |   | 77          |             | 77          |            | RA<br>Co<br>ado<br>(H |
| COM0<br>COM1   | 00                        | D1[3:0]     | D1[7:4]                                                                         | D0[3:0]     | D0[7:4]     |   | D239[3:0]   | D239[7:4]   | D238[3:0]   | D238[7:4]  |                       |
|                |                           | D241[5:0]   | D241[3:0] D241[7:4] D240[3:0] D240[7:4] D479[3:0] D479[7:4] D478[3:0] D478[7:4] |             |             |   |             |             |             | -          |                       |
| COM126         | 7E                        | D30241[3:0] | D30241[7:4]                                                                     | D30240[3:0] | D30240[7:4] |   | D30479[3:0] | D30479[7:4] | D30478[3:0] | D30478[7:4 | 9                     |
| COM127         | 7F                        | D30481[3:0] | D30481[7:4]                                                                     | D30480[3:0] | D30480[7:4] |   | D30719[3:0] | D30719[7:4] | D30718[3:0] | D30718[7:4 | <b>[</b> ]            |
| COM<br>Outputs | Conesponding to one pixer |             |                                                                                 |             |             |   |             |             |             |            |                       |

# CD ØRITEK GROUP Ritdisplay Corporation

## POWER ON/OFF SEQUENCE

### Power ON sequence:


- 1. Power ON VCI, VDDIO.
- 2.After VCI, VDDIO become stable, set wait time at least 1ms ( $t_0$ ) for internal V<sub>DD</sub> become stable. Then set RES# pin LOW (logic low) for at least 100us (t1)<sup>(4)</sup> and then HIGH (logic high).
- 3.After set RES# pin LOW (logic low ), wait for at least 100us(t2).
  - Then Power ON Vcc.<sup>(1)</sup>
- 4.After Vcc become stable, send command AFh for display ON. SEG/COM will be ON after 200ms(tAF).



### Power OFF sequence:

- 1.Send command AEh for display OFF.
- 2. Power OFF V<sub>CC</sub>.  $^{(1), (2)}$
- 3.Wait for t<sub>OFF</sub>. Power OFF Vci,VDDio.

```
(where Minimum toff=80ms<sup>(3)</sup>, Typical toff=100ms)
```



Note:

(1). Since an ESD protection circuit is connected between  $V_{\text{CI}},\,V_{\text{DDIO}}$  and  $V_{\text{CC}},\,V_{\text{CC}}$  becomes lower than

 $V_{CI}$  whenever  $V_{CI}$ ,  $V_{DDIO}$  is ON and  $V_{CC}$  is OFF as shown in the dotted line of  $V_{CC}$  in Figure.

- (2).V<sub>CC</sub> should be kept float (disable) when it is OFF.
- (3).V<sub>CI</sub>, V<sub>DDIO</sub> should not be Power OFF before V<sub>CC</sub> Power OFF.
- (4). The register values are reset after  $t_1$ .
- (5). Power pins (V\_{DD}, V\_{CC}) can never be pulled to ground under any circumstance.



# Thank You

