

型号: ZX12232C

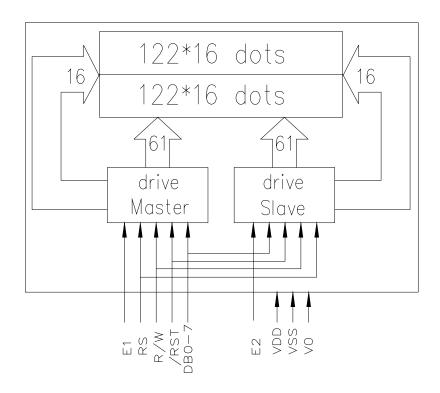
2009年3月15日

北京市海淀区中关村大街32号和盛大厦811室 电话:(86)-010-52926620 传真:(86)-010-52926621

企业网站:http://www.zxlcd.com

RECORDS OF REVISION

DATE	REVISED NO.	REVISED DESCRIPTIONS	PREPARED	CHECKED	APPROVED
August 30, 2008	1.00	FIRST ISSUE	ynn		


CONTENTS

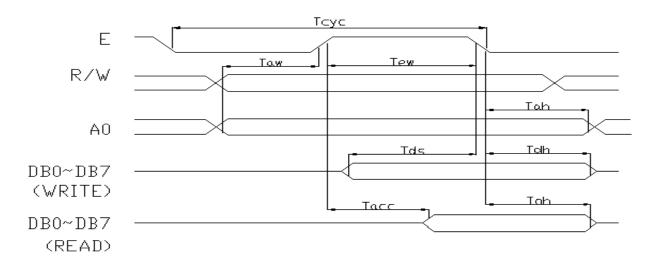
1.	FEATURES	1
2.	BLOCK DIAGRAM	1
3.	ABSOLUTE MAXIMUM RATING	1
4.	DC CHARACTERISTICS	2
5.	AC CHARACTERISTICS	2
6.	OPTICAL CHARACTERISTICS	2
7.	PIN ASSIGNMENT	3
8.	OUTLINE DIMENSIONS	4
9.	INSTRUCTION CODE TABLE	5
10.	DDRAM ADDRESS TABLE	6
11.	APPLICATION EXAMPLES	6
12.	RELIABILITY	12
13.	QUALITY GUARANTEE	13
14.	INSPECTION CRITERIA	14
15.	PRECAUTIONS FOR USING LCD MODULES	17
16.	USING LCD MODULES	18

1. FEATURES

ITEM	STANDARD VALUE	UNIT
Display Type	122*32 dots	-
LCD Type	STN, Blue,Transmissive,Negative	-
LCD Duty	1/32	-
Viewing Direction	6:00	
Backlight Type	Side White LED Backlight	-
Interface	8-BIT MPU(6800)	-
Driver IC	SED1520	-
LCD Bias	1/5 BIAS	-
Module Dimension	76.4(W)X29.1(H)X6.0(T)	mm
Effective Display Area	48.76(W)X15.32(H)	mm
Dot Size	0.36(W)X0.41(H)	mm
Dot Pitch	0.40(W)X0.45(H)	mm

2. BLOCK DIAGRAM

3. ABSOLUTE MAXIMUM RATINGS

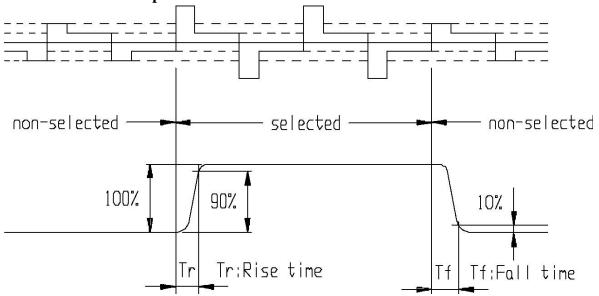

Item	Symbol	Standard Value	Unit	Condition
Power supply voltage	VDD	0~+7.0		
Input voltage	VIN	GND≤VIN≤VDD	V	
Operating temperature range	Тор	-10~+60	°C	No condition
Storage temperature range	Tst	-20~+70		

4. DC CHARACTERISTICS: (Ta=-10--60°C, VDD=2.7--6.0V)

Item	Symbol	Standard Value	Unit
Power Supply	VDD	5.0	V
LCD Driving Voltage	VLCD	4.7	V
Input High Voltage	VIN	0.8VDD≤VIN≤VDD	V
Output High Voltage	VOH	0.5VDDmin	V
Input Low Voltage	VIL	0≤VIL≤0.2VDD	V
Output Low Voltage	VOL	0.1VDDmax	V
Power Supply Current	IDD	2max	mA
LCD Power Supply Current	ILCD	220max	uA
Backlight Voltage	V-BL	3.0	V
Backlight Current	I-BL		mA

5. AC CHARACTERISTICS

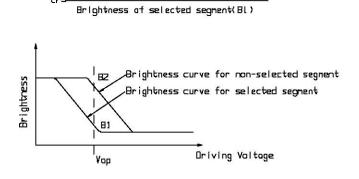
Signal	Parameter	Symbol	MIN	MAX	Unit	Condition
	System cycle time	Tcyc	2000		ns	
A0, /RW	Address setup time	Taw	40		ns	
	Address hold time	Tah	20		ns	
	Data setup time	Tds	160			CL=100p F
	Data hold time	Tdh	20		ns	CL-100p F
DB0~DB7	Output disable time	Tch	20	120	ns	
	Access time	Tacc	ŀ	180	ns	
Е	Enable pulse width(Read)	Tew	200			
	Enable pulse width(Write)	iew	160		ns	
Input wave wid	dth rise time	Tr		15	ns	

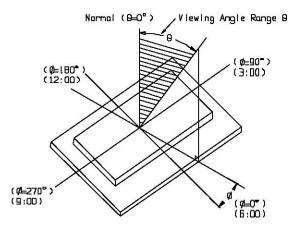


6. OPTICAL CHARACTERISTICS

Item	Symbol	Condition	Min	Тур	Max	Unit	Remarks	Note
Response	Tr	-	-	110	220	ms	-	1
Time	Tf	-	-	260	520	ms	-	1
Contrast Ratio	Cr	-	-	3	-	-	-	2
Viewing			-	-	30	deg	Ø= 90	3
Angle	θ	Cr≥ 2	-	-	30	deg	Ø = 270	3

Range		15	-	105	deg	$\emptyset = 0$	3
		1	-	-	deg	Ø = 180	3

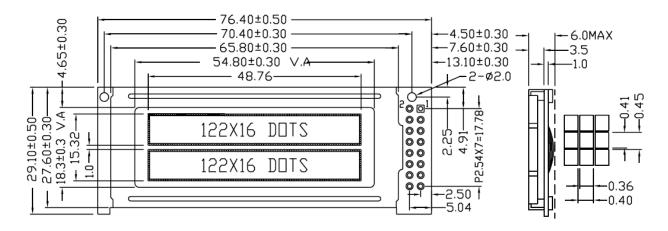

Note 1. Definition of response time



Note 2. Definition of Contrast Ratio 'Cr' 'q'

Brightness of non-selected segment(B2)

Note 3. Definition of Viewing Angle Range



7. PIN ASSIGNMENT

PIN NO.	Symbol	Level	Function
1	VDD	+5.0V	Power supply for Logic
2	VSS	0	Ground
3	V0	0~+5V	Power supply for LCD Driver
4	/RST	H/L	Reset signal. Low-Active
5	E1	H/L	Enable signal for left of the panel(High-Active)
6	E2	H/L	Enable signal for right of the panle(High-Active)
			Read/Write select signal
7	R/W	H/L	R/W=H: Read;
			R/W=L: WRITE.
			Register selection signal
8	RS	H/L	RS=H: Data register
			RS=L: Instruction register

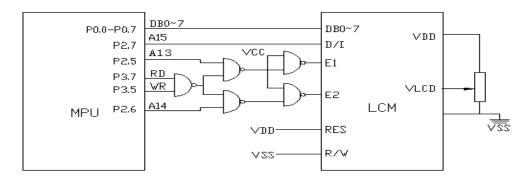
9	DB0	H/L	Data bit 0
10	DB1	H/L	Data bit 1
11	DB2	H/L	Data bit 2
12	DB3	H/L	Data bit 3
13	DB4	H/L	Data bit 4
14	DB5	H/L	Data bit 5
15	DB6	H/L	Data bit 6
16	DB7	H/L	Data bit 7

8. OUITLINE DIMENSIONS

9. INSTRUCTION CODE TABLE

INSTRCTI					COD	Е					EUNCTION
ON	R/W	D/I	D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
DISPLAY ON/OFF	0	0	1	0	1	0	1	1	1	1/0	ON or OFF, regardless of the display RAM's Data or the internal status. 1: ON 0: OFF
Display Start Line	0	0	1	1	0	Display start Line (0 •••• 31)				Determines the line of RAM data to be displayed at the display's top line (COM0)	
Page Address set	0	0	1	0	1	1	1	0		GE: ~3)	Sets the page of the Display in the Address register(X address)
Column (seg) Address set	0	0	0		Со	lumn address(0~79)					Sets the column of the Display in the column address register(Y address)
Status Read	1	0	B u s y	A D C	ON / OFF	R S T	0	0	0	0	Read status Busy 1:insternal operation 0:Ready ADC 1:Rightward output 0:Leftward

	r				1						1
											RST 1:Reseting
											0:Normal
											ON/OFF 1:Display on
***	0					*** * .	1 .				0:Display off
Write	0	1				Write	data				Writes the data on the
Display											Data bus to RAM
Data						D 1	1 .				D 1 1 0 1
Read	1	1				Read	data				Reads data from the
Display											Display RAM onto the
Data	0	0	1		1	0			0	0/1	Data BUS
ADC Select	0	0	1	0	1	0	0	0	0	0/1	Determine the clockwise or
											Counterclockwise
											reading of the display Data RAM
											0: Clockwise
											1: Counterclockwise
Static Drive	0	0	1	0	1	0	0	1	0	0/1	Select the dynamic or
ON/OFF	U	U	1		1	U	0	1	U	0/1	static Driving.
014/011											1:Static driving
											0: Dynamic driving
Duty Ratio	0	0	1	0	1	0	1	0	0	0/1	Select the duty ratio
Select			•		1					0/1	1:1/32 duty
Scient											0:1/16 duty
Read	0	0	1	1	1	0	0	0	0	0	Increment the column
Modify			_								Address register when
Write											writing. But no-change
											when reading.
End	0	0	1	1	1	0	1	1	1	0	Release from the Read
											Modify Write Mode.
											Set the Display Start
Reset	0	0	1	1	1	0	0	0	1	1	Line Register to 1 st
Reset	0	U	1	1	1	U	U	0	1	1	line, column Address
											count to 0 and Page
											Add. Resister to 0.
Power	0	0	0	1	0	1	0	1	1	0	Set the power save
Save(dual	0	0	0	1	0	1	0	1	0	1	mode by selecting
Save(dual											display off and static
command)											driving on
				l	1]	l]		


10. DDRAM ADDRESS TABLE

Page	Data		Com No	Drive
	D0	:		
2	:	:	1	
	D7	122 X 16 PLXELS	:	
	D0	:	:	Slave
3	:	:	16	
	D7	122 X 16 PLXELS		
	D0	:		
0	:	:	17	
	D7	122 X 16 PLXELS	:	

	D0		:	:	Master
1	:		:	32	
	D7	122 X 16	PLXELS		
Column Addr	ADC=0	00H ⋅・・・ 3C	00H ⋅・・・ 3C		
	Seg No	0 •••• 60	0 •••• 60		
	Drive	Slave	Master]	

11. APPLICATION EXAMPLES

X12232C has two access mode: direct access mode and indirect access mode. The following picture is the YM12232C connecting to the singlechip 8031's direct access. (VDD=5.0V)

Using the above circuit, we introduce the programme example.

ORG 0100H INITM: MOV A, #0E2H ; RESET LCALL OUTMI LCALL OUTSI MOV A, #OAEH ; OFF DISPLAY LCALL OUTMI LCALL **OUTSI** ; OFF STATIC DRIVE MOV A, #OA4H LCALL OUTMI LCALL OUTSI ; SELECT 1/32 DUTY MOV A, #0A9H LCALL OUTMI LCALL OUTSI MOV A, #OAOH ; ADC SELECT RIGHTWARS OUTPUT LCALL OUTMI LCALL **OUTSI** MOV A, #OEEH ; READ MODIFY WRITE OFF LCALL OUTMI LCALL OUTSI MOV A, #00H ; COLUMN ADDRESS SET LCALL OUTMI

```
LCALL
                OUTSI
       MOV A, #OCOH
                               ; SET DISPLAY START LINE
       LCALL
                OUTMI
       LCALL
                OUTSI
       MOV A, #OAFH
                               ; ON DISPLAY
       LCALL
                OUTMI
       LCALL
                OUTSI
; DISPLAY "*"
       MOV R2, #0B8H
  DIS2: MOV A, R2
       LCALL OUTMI
       LCALL OUTSI
       MOV A, #00H
       LCALL OUTMI
       LCALL OUTSI
       MOV R1, #1FH
 DIS1: MOV A, #55H
       LCALL
               OUTMI
       LCALL
                OUTSI
       MOV A, #OAAH
       LCALL
               OUTMI
       LCALL
                OUTSI
       DJNZ R1, DIS1
        INC R2
       CJNE R2, #OBCH, DIS2
       LCALL
               MS40
       LCALL
               MS40
       LCALL
               MS40
       LCALL
               MS40
       MOV A, #OAFH
; DISPLAY "横条"
       MOV R2, #0B8H
 DIS3: MOV A, R2
       LCALL
                OUTMI
       LCALL
                OUTSI
       MOV A, #00H
       LCALL
                OUTMI
       LCALL
                OUTSI
       MOV R1, #3DH
  DIS4: MOV A, #55H
       LCALL
               OUTMD
```

LCALL

OUTSD

```
DJNZ R1, DIS4
        INC R2
       CJIE R2, #0BCH, DIS3
       LCALL
               MS40
       LCALL
               MS40
       LCALL
               MS40
       LCALL
               MS40
       MOV A, #OAFH
       LCALL
                OUTMI
       LCALL
               OUTSI
; DISPLAY "竖条"
       MOV R2, #0B8H
 DIS5: MOV A, R2
       LCALL
               OUTMI
       LCALL
                OUTSI
       MOV A, #00H
       LCALL
               OUTMI
       LCALL
                OUTSI
       MOV R1, #1EH
  DIS6: MOV A, #00H
       LCALL
                OUTMI
       LCALL
               OUTSI
       MOV A, #OFFH
       LCALL
               OUTMI
       LCALL
               OUTSI
       DJNZ R1, DIS6
       MOV A, #3CH
       LCALL
               OUTMI
       LCALL
                OUTSI
       MOV A, #00H
       LCALL
                OUTMI
       LCALL
                OUTSI
        INC R2
       CJNE R2, #0BCH, DIS5
       LCALL
               MS40
       LCALL
               MS40
       LCALL
               MS40
       LCALL
               MS40
       MOV A, #OAFH
```

[;] DISPLAY 汉字"两只黄鹂鸣翠柳 一行白鹭上青天"

INITMC: MOV DPTR, #CHINESE

MOV R1 #00H

MOV B, #B8H

DISPWORDM: PUSH B

MOV A, B

LCALL OUTMI

LCALL OUTST

MOV A, #OOH

LCALL OUTMI

MOV R2 #7AH

DISPWORD1: MOV A, R1

MOVC A, @A+DPTR

LCALL OUTMD

INC DPTR

DEC R2

CJNE R2, #3DH, DISPWORD1

MOV A, #00H

LCALL OUTST

DISPWORD2: MOV A, R1

MOVC A, @A+DPTR

LCALL OUTSD

INC DPTR

DJNZ R2, DISPWORD2

MOV R1, #00H

POP B

INC B

MOV A, B

CINZ A, #OBCH, DISPWORDM

LCALL MS40

LCALL MS40

LCALL MS40

LCALL MS40

AJMP INITM

MS40: MOV R7, #0E8H

MS2: MOV R6, #0FFH

MS1: DJNA R6, MS1

DJNZ R7, MS2

RET

```
; OUT
      INSTRCTION
                  TO
                      MASTER 6450
OUTMI: PUSH DPH
       PUSH DPL
       MOV DPTR, #6000H
       MOVX
             @DPTR, A
       POP
            DPL
       POP
            DPH
       RET
; OUT
      INSRCTION
                 TO SLAVE 6450
OUTSI: PUSH
            DPH
      PUSH DPL
      MOV DPTR, #5000H
      MOVX @DPTR, A
      POP
           DPL
      POP
           DPH
      RET
; OUT
      DATA TO MASTER 6450
OUTMD: PUSH DPH
      PUSH DPL
      MOV DPTR, #0E000H
      MOVX @DPTR, A
      POP
           DPL
      P<sub>O</sub>P
           DPH
      RET
; OUT
      DATA TO SLAVE 6450
OUTSD: PUSH DPH
      PUSH DPL
      MOV DPTR, #0D000H
      MOVX @DPTR, A
      P<sub>O</sub>P
           DPL
      POP
           DPH
      RET
CHINESE:; (PAGEO)
DB 00H, 00H
DB 00, 00, 10H, 88H, 0C4H, 23H, 40H, 42H, 42H, 42H, 42H, 42H, 0C2H, 43H, 62H, 40H, 00
DB 00, 00, 00, 0F8H, 08H, 0CH, 0AH, 09H, 08H, 08H, 08H, 08H, 08H, 0FCH, 08H, 00, 00
DB 00, 80H, 0EEH, 8AH, 0FAH, 0AAH, 0AEH, 80H, 24H, 0E3H, 0B6H, 0AAH, 0B6H, 0E2H, 20H, 20H, 00
```

```
DB 00, 00, 00, 00, 00, 00, 00, 00, 0FFH, 20H, 20H, 20H, 30H, 20H, 00, 00, 00
```

- DB 00, 40H, 44H, 54H, 54H, 54H, 54H, 54H, 7FH, 54H, 54H, 54H, 54H, 56H, 44H, 40H, 00
- DB 00, 40H, 42H, 42H, 42H, 42H, 42H, 42H, 0FEH, 42H, 42H, 42H, 42H, 43H, 62H, 40H, 00
- 0B 00
- ; (PAGE1)
- DB 00,00
- DB 00, 02H, 01H, 00, 0FFH, 00, 00, 00, 00, 40H, 80H, 7FH, 00, 00, 00, 00
- DB 00, 00, 40H, 40H, 5H, 52H, 53H, 56H, 5AH, 52H, 5AH, 56H, 90H, 90H, 78H, 10H, 00
- DB 00, 00, 00, 00, 0FFH, 15H, 15H, 15H, 15H, 15H, 55H, 95H, 7FH, 00, 00, 00
- DB 00, 80H, 80H, 40H, 20H, 10H. 0CH, 03H, 00, 03H, 0CH, 10H, 20H, 40H, 0COH, 40H, 00
- DB 00

: (PAGE2)

- DB 00,00
- DB 00, 02H, 02H, 0F2H, 12H, 12H, 0FEH, 12H, 12H, 0FEH, 12H, 12H, 0F2H, 03H, 02H, 00
- DB 00, 00, 00, 00, 0FCH, 04H, 04H, 04H, 04H, 04H, 04H, 04H, 0FEH, 04H, 00, 00, 00
- DB 00, 20H, 20H, 24H, 24H, 24H, 3FH, 24H, 0E4H, 24H, 3FH, 24H, 24H, 24H, 30H, 20H, 00
- DB 00, 04H, 0E4H, 24H, 0E4H, 04H, 0E4H, 26H, 0E4H, 00, 0FCH, 06H, 55H, 84H, 7CH, 00, 00
- DB 00, 00, 0FCH, 04H, 04H, 0FCH, 04H, 00, 0FCH, 06H, 15H, 44H, 84H, 7EH, 04H, 00, 00
- DB 00, 00, 40H, 41H, 55H, 0C9H, 41H, 5FH, 60H, 41H, 55H, 0C9H, 41H, 5FH, 40H, 00, 00
- DB 00, 10H, 0D0H, 0FFH, 90H, 10H, 0FEH, 02H, 02H, 0F9H, 00, 0FEH, 02H, 02H, 0FFH, 02H, 00 DB 00

: (PAGE3)

- DB 00,00
- DB 00, 00, 00, 0FFH, 08H, 04H, 03H, 14H, 08H, 04H, 03H, 44H, 98H, 7FH, 00, 00, 00
- DB 00, 00, 80H, 40H, 23H, 11H, 19H, 01H, 01H, 01H, 09H, 11H, 23H, 60H, 0C0H, 00, 00
- DB 00, 00, 80H, 80H, 5FH, 55H, 35H, 15H, 1FH, 15H, 35H, 35H, 5FH, 40H, 80H, 00, 00
- DB 00, 00, 7FH, 02H, 7FH, 00, 7FH, 02H, 7FH, 10H, 13H, 12H, 1AH, 52H, 82H, 7EH, 00
- DB 00, 00, 0FH, 04H, 04H, 0FH, 10H, 10H, 13H, 12H, 12H, 1AH, 52H, 82, 7FH, 02H, 00
- DB 00, 08H, 08H, 0AH, 09H, 08H, 09H, 0AH, 0FCH, 0AH, 09H, 08H, 09H, 0AH, 08H, 08H, 00
- DB 00, 01H, 00, 0FFH, 00, 01H, 8FH, 44H, 22H, 1FH, 00, 0FFH, 08H, 10H, 0FH, 00, 00 DB 00

12. RELIABILITY

Content of Reliability Test

		Environmental Test		
No.	Test Item	Content of Test	Test Condition	Applicable Standard
1	High temperature storage	Endurance test applying the high storage temperature for a long time.	70 ℃ 200 hrs	
2	Low temperature storage	Endurance test applying the low storage temperature for a long time.	-20 ℃ 200 hrs	
3	High temperature operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	60 ℃ 200 hrs	
4	Low temperature operation	Endurance test applying the electric stress under low temperature for a long time.	-10 ℃ 200 hrs	
5	High temperature Humidity storage	Endurance test applying the high temperature and high humidity storage for a long time.	50 ℃ , 90 .RH 96 hrs	MIL-202E-103B JIS-C5023
6	High temperature Humidity operation	Endurance test applying the electric stress (Voltage & Current) and temperature humidity stress to the element for a long time.	50 ℃ , 90 .RH 96 hrs	MIL-202E-103B JIS-C5023
7	Temperature cycle	Endurance test applying the low and high temperature cycle. -10 $^{\circ}$ C 25 $^{\circ}$ C 60 $^{\circ}$ C 30min. \Longrightarrow 5min. \Longrightarrow 30min.	-10°C − 60°C 10 cycles	
Mech	anical Test			
8	Vibration test	Endurance test applying the vibration during transportation and using.	10-22Hz → 1.5mmp-p 22-500Hz → 1.5G Total 0.5hrs	MIL-202E-201A JIS-C5025 JIS-C7022-A-10
9	Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G half sign wave 1I msedc 3 times of each direction	MIL-202E-213B
10	Atmospheric pressure test	Endurance test applying the atmospheric pressure during transportation by air.	115 mbar 40 hrs	MIL-202E-105C
Other	rs			
11	Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V, RS=1.5 k CS=100 pF 1 time	MIL-883B-3015.1

^{***} Supply voltage for logic system = 3V. Supply voltage for LCD system = Operating voltage at 25°C.

Failure Judgment Criterion

Criterion Item		Test Item No.							Failure Judgment Criterion			
	1	2	3	4	5	6	7	8	9	10	11	
Basic specification												Out of the Basic Specification
Electrical characteristic												Out of the DC and AC Characteristic
Mechanical characteristic												Out of the Mechanical Specification Color change : Out of Limit Apperance Specification
Optical characteristic												Out of the Apperance Standard

13 QUALITY GUARANTEE

Acceptable Quality Level

Each lot should satisfy the quality level defined as follows.

- Inspection method: MIL-STD-105E LEVEL II Normal one time sampling
- AQL

Partition	AQL	Definition
A: Major	0.4%	Functional defective as product
B: Minor	1.5%	Satisfy all functions as product but not satisfy cosmetic standard

Definition of 'LOT'

One lot means the delivery quantity to customer at one time.

Conditions of Cosmetic Inspection

Environmental condition

The inspection should be performed at the 1cm of height from the LCD module under 2 pieces of 40W white fluorescent lamps (Normal temperature $20\sim25$ °C and normal humidity $60\pm15\%$ RH).

Inspection method

The visual check should be performed vertically at more than 30cm distance from the LCD panel.

Driving voltage

The VO value which the most optimal contrast can be obtained near the specified VO in the specification. (Within ± 0.5 V of typical value at 25 °C.).

14. INSPECTION CRIATERIA

14.1 Module Cosmetic Criteria

No.	Item	Judgment Criterion	Partition
1	Difference in Spec.	None allowed	Major
2	Pattern peeling	No substrate pattern peeling and floating	Major
3	Soldering defects	No soldering missing	Major Major
		No soldering bridge	Major
		No cold soldering	
4	Resist flaw on substrate	Invisible copper foil ('0.5mm or more) on substrate pattern	Minor
5	Accretion of metallic	No soldering dust No accretion of metallic foreign	Minor Minor
	Foreign matter	matters (Not exceed '0.2mm)	
6	Stain	No stain to spoil cosmetic badly	Minor
7	Plate discoloring	No plate fading, rusting and discoloring	Minor
8	Solder amount	a. Soldering side of PCB	Minor
		Solder to form a	
		'Filet' all around the lead.	
		Solder should not hide	
	1. Lead parts	the lead form perfectly.	
		(too much)	
		b. Components side	
		(In case of 'Through	
		Hole PCB')	
	A 71	Solder to reach the Components side of PCB.	7.6
	2. Flat packages	Either 'Toe' (A) or	Minor
		'Seal' (B) of the lead A B	
		to be covered by	
		'Filet'.	
		Lead form to be assume over solder. A B	
	3. Chips	$(3/2) H \geqslant h \geqslant (1/2)$	Minor
		Н Др Н	

14.2 Screen Cosmetic Criteria (Non-Operating)

No.	Defect	Judgment Criterion		Partition
1	Spots	In accordance with <i>Screen No.1</i> .	een Cosmetic Criteria (Operating)	Minor
2	Lines	In accordance with <i>Scrolloo</i> .2.	een Cosmetic Criteria (Operating)	Minor
3	Bubbles in		1	Minor
	polarizer	Size : d mm	Acceptable Qty in active area	
	polarizer	d ≤ 0.3	Disregard	
		$0.3 < d \le 1.0$	3	
		$1.0 < d \le 1.5$	1	
		1.5 < d	0	
			•	

4	Scratch	In accordance with spots and lines operating cosmetic	Minor
		criteria. When the light reflects on the panel surface, the	
		scratches are not to be remarkable.	
5	Allowable	Above defects should be separated more than 30mm each	Minor
3	density	other.	WIIIOI
6	Coloration	Not to be noticeable coloration in the viewing area of the	Minor
		LCD panels. Back-lit type should be judged with back-lit on	
		state only.	
7	Contamination	Not to be noticeable.	Minor

14.3 Screen Cosmetic Criteria (Operating)

No.	Defect	Judgment Criterion		Partition
1	Spots	A) Clear Note:		Minor
		Size : d mm	Acceptable Qty in active area	
		d ≤ 0.1	Disregard	
		$0.1 < d \le 0.2$	3	
		$0.2 < d \le 0.3$	2	
		0.3 < d	0	
			defective dots which must be within one	
		pixel size.		
		B) Unclear Size :		
		Size : d mm	Acceptable Qty in active area	
		d ≤ 0.2	Disregard	
		0.2 < d ≤ 0.5	6	
		$0.5 < d \le 0.7$	2	
		0.7 < d	0	
2	Lines	A)Clear		Minor
		L 5.0	(0)	
		∞ ∞		
		2.0 (3)	See No. 1	
		0.02 0.05	W	
		0.02 0.05		
		Note: () - Acceptable Qty		
		-Length (mm) W	- widin (mm)	
		∞ - Disregard		
		B) Unclear		
		L 10.0	(0)	
		(6)		
		2.0	See No. 1	
		2.0	W W	
		0.05	0.3 0.5 W	

'Clear' = The shade and size are not changed by VO.

'Unclear' = The shade and size are changed by VO.

14.4 Screen Cosmetic Criteria (Operating) (Continued)

No.	Defect	Judgment Criterion	Partition
3	Rubbing line	Not to be noticeable.	
4	Allowable density	Above defects should be separated more than 10mm each other.	Minor
5	Rainbow	Not to be noticeable.	Minor
6	Dot size	To be 95% ~ 105% of the dot size (Typ.) in drawing. Partial	Minor
		defects of each dot (ex. pin-hole) should be treated as 'Spot'. (see	
		Screen Cosmetic Criteria (Operating) No.1)	
7	Uneven	Uneven brightness must be BMAX / BMIN ≤ 2	Minor
	brightness (only	- BMAX : Max. value by measure in 5 points	
	back-lit type	- BMIN : Min. value by measure in 5 points	
	module)	Divide active area into 4 vertically and horizontally. Measure	
	,	5 points shown in the following figure.	
		0 0	
		0	
		O : Measuring points	

Note:

- (1) Size : d = (long length + short length) / 2
- (2) The limit samples for each item have priority.
- (3) Complexed defects are defined item by item, but if the number of defects are defined in above table, the total number should not exceed 10.
- (4) In case of 'concentration', even the spots or the lines of 'disregarded' size should not allowed. Following three situations should be treated as 'concentration'.
 - 7 or over defects in circle of '5mm.
 - 10 or over defects in circle of '10mm.
 - 20 or over defects in circle of 20mm.

15. PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

- (1) The display panel is made of glass. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.

- (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol
- (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents
- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the IO cable or the backlight cable.
 - (9) Do not attempt to disassemble or process the LCD module.
 - (10) NC terminal should be open. Do not connect anything.
 - (11) If the logic circuit power is off, do not apply the input signals.
- (12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - Be sure to ground the body when handling the LCD modules.
 - Tools required for assembling, such as soldering irons, must be properly grounded.
- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.
- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

Storage Precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags (avoid high temperature high humidity and low temperatures below 0 C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the

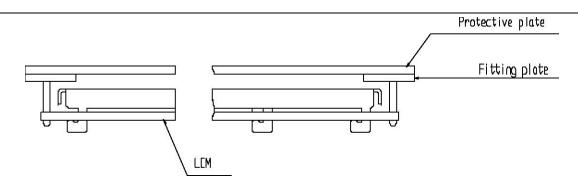
display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- Terminal electrode sections.

16. USING LCD MODULES

Liquid Crystal Display Modules


LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- (1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- (2) Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances which will be damaged by chemicals such as acetone, toluene, ethanol and isopropylalcohol.
- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum benzin. Do not scrub hard to avoid damaging the display surface.
- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
 - (6) Avoid contacting oil and fats.
- (7) Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temp erature air.
 - (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degradate insulation between terminals (some cosmetics are determinated to the polarizers).
 - (10) As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.

(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be 0.1mm.

Precaution for Handing LCD Modules

Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- (1) Do not alter, modify or change the the shape of the tab on the metal frame.
- (2) Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - (3) Do not damage or modify the pattern writing on the printed circuit board.
 - (4) Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
- (5) Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
 - (6) Do not drop, bend or twist LCM.

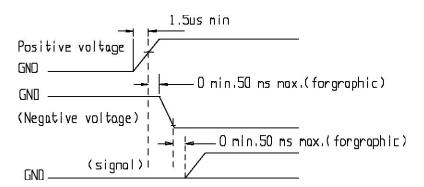
Electro-Static Discharge Control

Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

- (1) Make certain that you are grounded when handing LCM.
- (2) Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
- (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
- (5) As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.
- (6) To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%60% is recommended.

Precaution for soldering to the LCM

(1) Observe the following when soldering lead wire, connector cable and etc. to the LCM.


- Soldering iron temperature : 280 C 10 C.
- Soldering time: 3-4 sec.
- Solder: eutectic solder.

If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage dur to flux spatters.

- (2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- (3) When remove the electoluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

Precautions for Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (VO). Adjust VO to show the best contrast.
 - (2) Driving the LCD in the voltage above the limit shortens its life.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of 40 °C, 50% RH.
- (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.

Storage

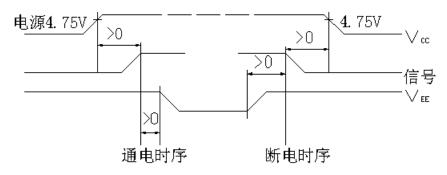
When storing LCDs as spares for some years, the following precaution are necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0° C and 35° C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped.)

Safety

- (1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leakes out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

Return LCM under warranty


No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :

- Broken LCD glass.
- PCB eyelet's damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's, conductors and terminals.

液晶显示模块使用注意事项

- 1. 请勿随意自行加工、整修、拆卸。
- 2. 避免对液晶屏表面施加压力。
- 3. 不要用手随意去摸外引线、电路板上的电路及金属框。
- 4. 如必须直接接触时,应使人体与模块保持同一电位,或将人体良好接地。
- 5. 焊接使用的烙铁、操作用的电动改锥等工具必须良好接地,没漏电。
- 6. 严防各种静电。
- 7. 模块使用接入电源及断开电源时,必须按图时序进行。即必须在正电源(5±0.25V) 稳定接入后,才能输入信号电平。如在电源稳定接入前,或断开后就输入信号电平, 将会损坏模块中的集成电路,使模块损坏。

- 8. 点阵模块在调节时,应调整 VEE 至最佳对比度、视角时为止。如果 VEE 调整过高,不仅会影响显示,还会缩短液晶的寿命。
- 9. 模块表面结雾时,不要通电工作,因为这将引起电极化学反应,产生断线。
- 10. 模块要存储在暗处(避阳光),温度在-10℃~+35℃,湿度在 RH60%以上的地方。 如能装入聚乙烯口袋(最好有防静电涂层)并将口封住最好。

以上使用说明由北京中显电子有限公司编制,有问题请电话联络,我们将竭诚为您服务,同时,提供完善的保修服务!因为每种液晶使用的控制器都不一样,控制器的型号基本就决定了液晶的指令形式和使用方式,所以,在说明书里一般不会详细照搬控制器说明书的每个细节,只会简要介绍常用指令,如果需要了解详细的指令和具体电气参数,请参照WWW.ZXLCD.COM网站里的"技术支持"菜单下,均有对应控制器手册免费下载,直接对应现有各类液晶使用的各种控制器,使用手册里一般有具体电气参数说明,指令详细介绍,同时辅以编程实例,以便客户详细参照,同时提高编程及操作技巧。

服务电话: 010-52926620,82626833

公司地址:北京市中关村大街 32 号蓝天和盛大厦 811 室